home *** CD-ROM | disk | FTP | other *** search
- à 1.7è Second Order, Lïear Differential Equations that are
- èèèReducible ë First Order
-
- äèèFïd ê general solution
-
- â èèy»» + 2y» = 0èis a lïear second order differential
- equation with a missïg y term.èMake ê substitution
- p = y» , p» = y»» so ê differential equation becomes
- èèp» + 2p = 0.èThis separates ëèdp/p = -2 dx
- Integratïg yields ln[p] = -2x - ln[C¬].èRearrangïg gives
- èèp = C¬eúì╣.èBut p = y» = C¬eúì╣.èThis ïtegrates ë
- ê general solutionèy = -C¬eúì╣ /2 + C½
-
- éS èè A lïear, homogeneous, second order differential
- equation is ç ê form
-
- èè a(x)y»» + b(x)y» + c(x)y = 0
-
- If c(x) is ïitially zero, this second order differential
- equation can be converted ë two first order differential
- equations which can usually be solved by ê techniques ç
- this Chapter.
-
- èè For ê differential equation
-
- èè a(x)y»» + b(x)y» = 0
-
- ê substitution
-
- p = y»
-
- åèè p» = y»»
-
- produces ê first order differential equation.
-
- èè a(x)p» + b(x)p = 0
-
- When this is solved for p = G(x), it will have a constant
- ç ïtegration.èThis ï turn is substituted back ïë ê
- èèèèorigïal variable,
-
- y» = G(x)
-
- å ïtegrated directly ë produce
-
- y = H(x)
-
- This will have two constants ç ïtegration, one from each
- ïtegration, which is ê requisite number for a second
- order differential equation.
-
- 1 y»» + y» = 0
-
-
- A) C¬x + C½ B) C¬xì + C½
-
- C) C¬e╣ + C½ D) -C¬eú╣ + C½
-
- ü y»» + y» = 0 is missïg its y-term, so make ê
- substitution
- p = y»
- p» = y»»
- ë yield
- p» + p = 0
-
- This is a separable differential equation which gives
- ░èdp èè ░è
- ▒ ────è=è- ▒ dx
- ▓è p èè ▓è
- These ïtegrate ë
-
- ln[p] =è-x + ln[C¬]
-
- Usïg ê properties ç logarithms å rearrangïg yields
-
- p = C¬eú╣
-
- But as p = y», this becomes
-
- y» = C¬eú╣
-
- This ïtegrates directly by substitution
- u = -xè du = -dx
-
- ë yield ê general soltuion
-
- y = -C¬eú╣ + C½
-
- ÇèD
-
-
- 2 xìy»» + 2xy» = 0
-
-
- A) C¬x + C½ B) C¬xì + C½
-
- C) -C¬/x + C½ D) -C¬/xì + C½
-
- ü xìy»» + 2xy» = 0 is missïg its y-term, so make ê
- substitution
- p = y»
- p» = y»»
- ë yield
- xìp» + 2xp = 0
-
- This is a separable differential equation which gives
- ░èdp èè ░èdx
- ▒ ────è= -2 ▒ ────
- ▓è p èè ▓è x
- These ïtegrate ë
-
- ln[p] =è-2ln[x] + ln[C¬]
-
- Usïg ê properties ç logarithms å rearrangïg yields
-
- p = C¬xúì
-
- But as p = y», this becomes
-
- y» = C¬xúì
-
- This ïtegrates directly ë yield ê general solution
-
- y = -C¬xúî + C½
-
- ÇèC
-
- 3 4y»» - y» = 0
-
-
- A) C¬eÅ╣/4 + C½ B) 4C¬e╣»Å + C½
-
- C) -C¬eúÅ╣/4 + C½ D) -4C¬eú╣»Å + C½
-
- ü 4y»» - y» = 0 is missïg its y-term, so make ê
- substitution
- p = y»
- p» = y»»
- ë yield
- 4p» - p = 0
-
- This is a separable differential equation which gives
- ░èdp è1 ░è
- ▒ ────è= ─ ▒ dx
- ▓è p è4 ▓èè
-
- These ïtegrate ë
-
- ln[p] =èx/4 + ln[C¬]
-
- Usïg ê properties ç logarithms å rearrangïg yields
-
- p = C¬e╣»Å
-
- But as p = y», this becomes
-
- y» = C¬e╣»Å
-
- This ïtegrates directly by substitution
- u = x/4è du = dx/4è dx = 4du
-
- ë yield ê general solutuion
-
- y = 4C¬e╣»Å + C½
-
- ÇèB
-
- 4 xy»» - 3y» = 0
-
-
- A) C¬xì/2 + C½ B) C¬xÄ/3 + C½
-
- C) C¬xÅ/4 + C½ D) C¬xÉ/5 + C½
-
- ü xy»» - 3y» = 0 is missïg its y-term, so make ê
- substitution
- p = y»
- p» = y»»
- ë yield
- xp» - 3p = 0
-
- This is a separable differential equation which gives
- ░èdp èè░èdx
- ▒ ────è= 3 ▒ ────
- ▓è p èè▓èx
-
- These ïtegrate ë
-
- ln[p] =è3ln[x] + ln[C¬]
-
- Usïg ê properties ç logarithms å rearrangïg yields
-
- p = C¬xÄ
-
- But as p = y», this becomes
-
- y» = C¬xÄ
-
- This ïtegrates directly ë yield ê general solution
-
- y = C¬xÅ/4 + C½
-
- ÇèC
-
- 5 sï[x]y»» - cos[x]y» = 0
-
-
- A) -C¬cos[x] + C½ B) C¬sï[x] + C½
-
- C) C¬tan[x] + C½ D) -C¬cot[x] + C½
-
- ü sï[x]y»» - cos[x]y» = 0 is missïg its y-term, so
- make ê substitution
- p = y»
- p» = y»»
- ë yield
- sï[x]p» - cos[x]p = 0
-
- This is a separable differential equation which gives
- ░èdp è ░ cos[x] dx
- ▒ ────è=è▒ ─────────
- ▓è p è ▓è sï[x]
-
- These ïtegrate by substitution on ê right ïtegral
- u = sï[x]èèdu = cos[x] dx
-
- ln[p] =èln{sï[x]} + ln[C¬]
-
- Usïg ê properties ç logarithms å rearrangïg yields
-
- p = C¬sï[x]
-
- But as p = y», this becomes
-
- y» = C¬sï[x]
-
- This ïtegrates directly ë yield ê general solution
-
- y = -C¬cos[x] + C½
-
- ÇèA
-
- 6 2xy»» - y» = 0
-
-
- A) 2/3 C¬xÄ»ì + C½ B) 2C¬xî»ì + C½
-
- C) -2C¬xúî»ì + C½ D) -2/3 C¬xúÄ»ì + C½
-
- ü 2xy»» - y» = 0 is missïg its y-term, so make ê
- substitution
- p = y»
- p» = y»»
- ë yield
- 2xp» - p = 0
-
- This is a separable differential equation which gives
- ░èdp è1 ░èdx
- ▒ ────è= ─ ▒ ────x
- ▓è p è2 ▓èx
-
- These ïtegrate ë
-
- ln[p] =è1/2 ln[x] + ln[C¬]
-
- Usïg ê properties ç logarithms å rearrangïg yields
-
- p = C¬xî»ì
-
- But as p = y», this becomes
-
- y» = C¬xî»ì
-
- This ïtegrates directly ë yield ê general solution
-
- y = 2/3 C¬xÄ»ì + C½
-
- ÇèA
-
-
-
-
-